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Abstract 

The eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces of arbitrary 
dimension are computed by separating variables in geodesic polar coordinates. These eigenfunctions 
are then used to derive the heat kernel of the iterated Dirac operator on these spaces. They are then 
studied as cross sections of homogeneous vector bundles, and a group-theoretic derivation of the 
spinor spherical functions and heat kernel is given based on Harish-Chandra’s formula for the radial 
part of the Casimir operator. 

Subj. Class.: Complex differential geometry; Quantum mechanics 
1991 MSC: 81QO581R25 
Keywords: Dirac operator; Eigenfunctions 

1. Introduction 

The N-dimensional sphere (sN) and the real hyperbolic space (HN), which are “dual” 
to each other as symmetric spaces [lo], are maximally symmetric. This high degree of 
symmetry allows one to compute explicitly the eigenfunctions of the Laplacian for various 
fields on these spaces. These eigenfunctions can be used in studying field theory in de Sitter 
and anti-de Sitter space-times since S4 and H4 are Euclidean sections of these space-times. 
Also S3 and H3 appear as the spatial sections of cosmological models, and various field 
equations and their solutions on these spaces have physical applications in this context. In 
addition to these applications, fields on SN and HN provide concrete examples for the theory 
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of homogeneous vector bt dles, and consequences of various theorems can explicitly be 
worked out. 

Recently the authors presented the eigenfunctions of the Laplacian for the transverse- 
traceless totally symmetric tensor fields [4] and for the totally antisymmetric tensor fields 
(p-forms) [5]. These fields were also analyzed in the light of group theory using the fact 
that they are cross sections of homogeneous vector bundles. As a continuation of these 
works we study in this paper the spinor fields satisfying the Dirac equation Q@ = ih+ and 
the heat kernel for O2 on SN and HN. The paper is organized as follows. In Section 2 the 
appropriately normalized eigenfunctions of the Dirac operator on SN with arbitrary N are 
presented using geodesic polar coordinates. The solutions on SN are expressed in terms 
of those on SN-’ Then we derive the degeneracies of the Dirac operator using the spinor 
eigenfunctions. Next, spinor eigenfunctions on HN are obtained by analytically continuing 
those on SN. Then they are used to derive the spinor spectral function (Plancherel measure) 
on H N. In Section 3 the results of Section 2 are used to write down the heat kernel for the 
iterated Dirac operator O2 on these spaces. 

Section 4 is devoted to a group-theoretic analysis of spinor fields on SN and HN. We use 
the fact that spinor fields on these symmetric spaces are cross sections of the homogeneous 
vector bundles associated to the fundamental spinor representation(s) of Spin(N). By ap- 
plying harmonic analysis for homogeneous vector bundles to SN = Spin(N + l)/Spin(N), 
in combination with the formula for the radial part of the Casimir operator given by Harish- 
Chandra, we derive the spinor spherical functions and the heat kernel of the iterated Dirac 
operator on SN. Then we apply harmonic analysis for homogeneous vector bundles to 
HN = Spin(N, l)/Spin(N), and rederive some results of Section 3 for this space. 

2. Spherical modes of the Dirac operator 

2.1. Spin structures and spinorjields 

A spin structure on an oriented n-dimensional Riemannian manifold Mn is a principal 
bundle over M” with structure group Spin(n) (denoted Spin(W) and sometimes called the 
bundle of spinor frames) together with a two-to-one bundle homomorphism f of Spin(M”) 
onto SO(M”) which is fiber preserving and group equivariant with respect to the standard 
two-to-one covering homomorphism (see, e.g., [13]). Let t be the (unique) fundamental 
spinor representation of Spin(n) (of dimension 2 (n-‘)/2) for n odd, and r+ @ t_, where rk 
are the two fundamental spinor representations of Spin(n) (of dimension 2(“j2)-’ each), for 
n even. We define a Dirac spinor field on M” to be a cross section of the vector bundle ET 
over M” with typical fibre @2’n’21 and structure group Spin(n) associated with Spin(M”) 
via the representation t (see [7, p.4181, for the definition of a general spinor field). In this 
paper we consider only Dirac spinors, and from now on the word “spinor” means Dirac 
spinor. Among the spaces we consider, i.e. SN and H N, only S’ admits more than one spin 
structure. There are two inequivalent spin structures on S’, and we choose the nontrivial 
one (see [8,15]) for the reason which will become clear later. 
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For explicit computations, such as the ones performed below, we need to express a 
spinor field and its covariant derivative with respect to a (local) moving orthonormal frame 
(e,&r, .._, ,, on M” in components. A metric connection w induces a spin connection on 
M” (i.e. a connection on Spin(Mn)) and a covariant derivative for the cross sections. Given 
a spinor @, the components of the spinor Vea @ in a local spinor frame (6A)A=l, ,__, 2~n.i?l (i.e. 
a set of linearly independent local cross sections of ET) are given by (see [7, p.4201) 

(Ve,lCI)A = e,(llrA) - $JU~P)~~~C~~, (2.1) 

where W&c are the connection coefficients in the frame e, [defined by Ve,eb = WObrec], 
and summation over repeated indices is understood from now on. The matrices Cab are the 
generators of the representation t of Spin(n). They can be expressed as Cnb = $ [f ‘, f ‘1, 
where P = (P)A, (a = 1, . . , n, A, B = 1, . . . , 2[n/21) are Dirac matrices satisfying 

rarb + rbrn = 2SQbl 2 a,b = 1, . ..) n, (2.2) 

where 1 is the unit matrix and Pb is the Kronecker symbol. The Dirac operator is then 
defined by 

2.2. SN 

The metric on SN may be written in geodesic polar coordinates as 

N-l 

dsi = de2 + f2(e) dsi_t = de2 + f2(e) C Sij doi @ dJ3 
i. j=l 

(2.4) 

where 0 is the geodesic distance from the origin (north-pole), f(0) = sine, and (w’) are 
coordinates on SN-‘, with metric tensor iii(o) = (a/am’, a/awj). Let {5j) be a vielbein 
on SN-’ , with anholonomy and (Levi-Civita) connection coefficients 

N-l 

[Cit Cj] = 1 CijkGk, 

k=l 

(2.5) 

&ijk = (GGi6j,6k) = i(cijk - Cikj - cjki). (2.6) 

We shall work in the geodesic polar coordinates vielbein {e,),=r, ,.., N on SN defined by 

eN = a0 = alao, 
1 _ 

ej=foe,, j=l,..., N-l. (2.7) 

The only nonvanishing components of the Levi-Civita connection w,bc in the frame {e, ) 
are found to be 

Wijk = (l/f)hjk, WiNk = -WikN = (f’/f)sik, i, j, k = 1, . . . , N - 1, 

(2.8) 
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where a prime denotes differentiation with respect to the argument. We use the spin con- 
nection on SN induced uniquely by the Levi-Civita connection w. We shall now solve for 
the eigenfunctions of rf7 on SN by separating variables in geodesic polar coordinates. 

Case 1: N even. We choose the r-matrices such that 

rj=(_O-j $j), j=l,..., N-l, (2.9) 

where i = fl and (fj, fk) = 26jk1. Using Eqs. (2.8) and (2.3), it is straightforward to 
derive the following expression for the Dirac operator in the vielbein (2.7): 

(2.10) 

where $ = rj?cj is the Dirac operator on SN-t . Now suppose that we have solved the 

eigenvalue equation on SN-‘, i.e. 

et) d7x/:’ = fi(l + p)xI, . (2.11) 

Here,theindexl =0,1, . . . . labels the eigenvalues of the Dirac operator on the (N - l)- 
sphere, and p = i(N - l), ’ while the index m runs from 1 to the degeneracy dl. Define 

(2.12) 

Since the dimension of x is the same as the dimension of &, i.e. 2(N/2)-‘, one can separate 
variables in the following way: 

(%+nlm(k Q) = n 4 r(@x(-)(Q) Irn 

~&9X’+‘(Q; 

(2.13) 

(2)++nlm (0, Q) = lm ’ (2.14) 

and similarly for the “lower” spinor $-. Here D E SN-‘, and n = O,l, . . . , labels the 
eigenvalues --AZ, N of Q2 on SN and n 1 1 (see later). 

Substituting (2.13) in the equation Q2+ = -hi, N$, we obtain the following equation 
for the scalar functions +,,I: 

(2.15) 

The unique regular solution to this equation is given in terms of Jacobi polynomials 
$a, b) n (x) [9], up to a normalization factor, 

+nnl (0) = (cos $#+t (sin _@)I p~(1~/2)+~-‘, cNi2)+l) (cos e>, (2.16) 

’ The spectrum of the Dirac operator on spheres is well known (see, e.g. [ 151). In fact our procedure gives 
an independent proof of (2.17) by induction over the dimension N. Eq. (2.11) may then be assumed as the 
inductive hypothesis in this proof. 
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with n - 1 > 0 - this condition is needed for the regularity of the eigenfunctions - and with 
the eigenvalues 

‘:. N = (n + ;N)*. (2.17) 

By proceeding in a similar way with the functions qnl in (2.14) we find 

qn/(fI) = (cos i@)‘(sin 40)[+’ P~~~‘*‘+” (N’2)+‘P’)(c~s 0) (2.18) 

= (-1)“-‘&&7 - 0). 

Define 

(2.19) 

(2.20) 

(2.21) 

Then we find that these spinors satisfy the first-order Dirac equation 

Q$!i,, = fi(n + i N)@&,, (2.22) 

where s = f. We require them to satisfy the normalization condition, 

(I,$~,. t’/$/!l,,,J = 
s 

dQ,v$$,&t), L?)t+$,,,,JO. L’) = 6,,,~&~~6,,,,~S,~.s~, (2.23) 

SN 

with an analogous relation for $y) -+ Ic/!‘. We note that ($$m, I/J!:!,,,,) = 0 for any 

choice of indices. Suppose that the spinors x:,” (a) are normalized by 

s 
dRN_,x:~‘(n)tx’““(~) = c?[~,S l’m’ mm ss’. ,6 (2.24) 

SN-I 

Then the normalization factor CN (nl) can be determined as 

Ic,,,(nl)l-* = 
2N-2 T(;N + n) 2 

(n-I)!(N+n+I-I)!’ 
(2.25) 

The degeneracy for the eigenvalue +i(n + i N) [or -i(n + i N)] is given by letting 
n = n’, 1 = l’, m = m’, s = s’ in (2.23) and summing over 1, m, s as 

DN(n) = 
s 

dQ,v c ‘&,(o, “)+‘&,(& Q). (2.26) 

SN slm 

We use the fact that the sum over s, 1, m inside the integral is constant over SN, so that it 
may be calculated for 8 + 0, where only the 1 = 0 term survives. We also note that the 
volume of SN is 

2n(N+‘)/* 
fiN = 

I+(N + 1))’ 
(2.27) 
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Now the degeneracy do of +ip (or -ip) on SN-’ (cf. (2.11)) coincides with the di- 
mension 2(‘v/2)-* of the fundamental spinor representations rk of Spin(N). Thus m = 
1,2, . . . . 2(N/2)-1 for 1 = 0 in (2.26), and we have the identity 

2(NP)-1 = J-J&._, 
c Orn’ x$;(Q)+x(%) (2.28) 
m 

From this equation and Eqs. (2.26) and (2.27) we obtain 

DN(fl) = 
2N/2(N + n - l)! 

. n!(N - l)! 
(2.29) 

Case 2: N odd (L 3). In this case a Dirac spinor on SN is irreducible under Spin(N) and 
the dimension of the f-matrices is 2(N-‘)/2, the same as on SN-‘. Thus for a = 1, . . . , N - 1 
we choose P as before, and for a = N we choose 

= (_i)(N-‘)/2r’r2.. . rN_1, (2.30) 

The Dirac operator in the geodesic polar coordinates vielbein (2.7) takes the form 

1C7~=(&+~cot0)f~*+(l/sin8)$@. (2.31) 

Now, suppose that x/i’ satisfy 

$x(-) = 
im -i(l+p)xlj;r), 1 =O,l, . . . (2.32) 

Then xl, (+) = f N~/i) is the eigenfunction of 9 with eigenvalue +i(l + p). Define i/,” 

by 

XI, -(-I = (l/&)(1 + ifN)x\G’, (2.33) 

XI, 
A (+) = rN iI’,-‘. (2.34) 

The normalized eigenfunctions of the first-order Dirac operator are found to be 

where 

Q++n~m(Q, f2) = fi(n + ~Nh+*:,tm(Q, Q). 

The computation of the dimensionality is similar to that for N even. We find 

(2.36) 

DN(n) = 
2cN-l)j2(N + IZ - I)! 

n!(N - l)! ’ 
(2.37) 

We have shown how to separate variables in the Dirac equation written in geodesic polar 
coordinates. In fact we have set up an induction procedure by which the spinor modes on 
SN can be recursively calculated starting from the spinor modes on S2. For N = 2, writing 
dsi = dQ2 + sin2 0 dq2, one simply has D = a/&p. We need to find which eigenvalues 
of this operator are allowed. Spinors on S2 should transform as a double-valued spin-i 
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representation of S 0 (2) under the rotation of zweibein. Now, the loop defined by 0 5 cp < 
2rr with 6’ = const. in the bundle of frames over S2 is homotope to the 2n-rotation at a point 
for our system of zweibein. Hence, the spinor field must change sign when it goes around 
this loop. Thus, we have a/acp = +ii, f ii, . . 2 This amounts to using the nontrivial 
spin structure on S’ (see [ 151). 

2.3. HN 

The real hyperbolic space H N is the noncompact partner of SN. The metric on HN in 
geodesic polar coordinates takes the form (2.4) with 6’ + y and f(y) = sinh y, where y 
is the geodesic distance from the origin. By repeating the same steps as on SN one obtains 
a hypergeometric equation for the spherical modes &j(y). The spectrum of rb2 is given by 
-A2 where I. is now a real and continuous label. The final results on HN and SN are related 
by analytic continuation in the geodesic distance. More precisely, one expresses the Jacobi 
polynomials in terms of the hypergeometric function and makes the replacements 

0 + iy, n-+-ih-$N 

in the spinor modes found above on SN. The result is as follows. Define 

(2.38) 

@u(Y) = (cash iy)‘+‘(sinh $y)‘F(iN +l+ih, $N+I-ih, $N+l, - sinh2 iv). 

(2.39) 

llrhl (Y) = $ (cash 4 y)’ (sinh 4.~)‘~’ 

xF($N+l+iA, iN+I-ih, iN+l+l, - sinh2 iv), 

wherehER+,andl=O,l,...,ca.ForNevenwehave 

(2.40) 

(2.41) 

where 

Q$f’-’ = &iA$‘-’ 
*Mm z!3./rn~ (2.42) 

The modes @$, are obtained by interchanging &,I (y) and i$hl (y), and letting 
(-) 

Xl, + x:,” on the right-hand side. The (continuous-spectrum) normalization constant 
CN(hl) is determined from the condition 

(2.43) 

’ It also follows that the spinor must vanish both at 8 = 0 and 7r if a/%+ # *ii. This is automatically 

satisfied by requiring regularity of the solutions. 
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and can be found with the method used for scalar and tensor fields [4] as 

lCN(M2 = GVlcl(V-*> 

where CN = 2N-2/n and 

(2.44) 

We define the spectral function p(A), which is needed to find the heat kernel, by 

(2.45) 

(2.46) 

where again s = f and the spin factor g(i) = 2 N/2 is the dimension of the spinor. Then 
we find 

p(A) = Ic()(h)J-* = z- 
T(+N+iA) 2 

22N-4 f (iN)T(i + iA) . 
(2.47) 

The computation proceeds almost in the same way for N odd. The modes are obtained from 
(2.35) by the substitution (2.38) and the formula for l(A) is again (2.47). 

3. The spinor heat kernel 

3.1. The compact case 

In terms of a local moving frame (ea] on SN and a lOCal spinor frame (OA}, the spinor 
heat kernel K(x, x’, t) on SN is a 2[N/21 x 2[N/21 matrix and satisfies the heat equation 
for lt7* 

(-(a/at) + !q)K(x,x’, t) = 0, (3.1) 

with the initial condition 

hnin 
s 

K(x,x’, t)$(x’) dx’ = $(x). (3.2) 
.P 

We first consider the case with N odd. The heat kernel is given by the familiar mode 
expansion 

+ $+dm CO’, Q’) G3 $+dm (0, sZ)*] e-t(n+N’2)2, (3.3) 

where $M~(C?, 52) is given by (2.35). In order to simplify this expression we let Q = Q’, 
i.e. we assume that the two points x = (0, Q) and x’ = (O’, a’) lie on the same “meridian”. 
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Then we take the limit 0’ + 0. We note that only the terms with 1 = 0 remain nonzero in 
this limit. Using (2.35) with 1 = 0 we find 

~,i~o~(~‘1Q3~,R,t) = lf,AJ(e,t), (3.4) 

where 

,f~(O,t) = & ~dn@n(0)ePcn+N~2)2. 
n-0 

Here the (pn (0) are the functions &o(e) normalized by C#J~ (0) = 1, 

(3.5) 

(3.6) 

and d,, are the degeneracies of Q2 on SN without the spin factor 21N/2]: 

d,, = 
2 (n+N- l)! 

n! (N-l)! . 
(3.7) 

Eq. (3.4) agrees with the known result (see, e.g., [3]). 
The spinor heat kernel K(x’, X, t) for arbitrary pair of points (x’, x) can be written using 

its invariance property as 

K(x’,.r,r) = II(X’,X).fN(d(X’,X),t), (3.8) 

where d(x’, x) denotes the geodesic distance between x and x’, and where I/(x’, X) is the 
spinor parallel propagator from x to x’. We have used the fact that U (x’. X) = 1 if x and x’ 
lie on the same “meridian”. 

The case with N even can be treated in the same way. We find that the heat kernel takes 
the same form (3.8). 

3.2. The noncompact case 

By using the (continuous) mode expansion of the heat kernel and going through the same 
procedure as in the case of SN, we find for arbitrary points x, x’ E HN with arbitrary N 

K(x’,.r,t) = u(X',X).~N(d(X',X),t), (3.9) 

A 

fN(Y>f) = 
2N-31+N) +m 

X(N/2)+1 s 
&(y)ePrh2~(h) dL 

0 

(3.10) 

where 4~ = 4~0, I is the spinor spectral function (2.47), and U is the parallel propagator. 
This result agrees with the literature (see, e.g., Ref. [3]). 
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4. Group theoretic derivation of the heat kernel 

In this section we give a group-theoretic derivation of the spectrum, the spherical eigen- 
functions, and the heat kernel of the iterated Dirac operator on SN and HN. We use basic 
facts about harmonic analysis for homogeneous vector bundles over compact symmetric 
spaces U/K (see, e.g., [16, Ch. 51). 

4.1. Spinors on SN 

In general, the vector bundle on lJ/ K associated with the principal bundle U (U/ K, K) by 
a representation t of K (see [ 12, Vol. I, ~551) coincides with the homogeneous vector bundle 
ES on U/K defined by t (see [ 16, Section 5.21). Therefore we can consider (Dirac) spinor 
fields on SN = Spin(N + l)/Spin(N) as cross sections of the homogeneous vector bundle 
ET, where for N odd t is the (unique) fundamental spinor representation of Spin(N) (of 
dimension 2(N-1)/2), and for N even t = t+ $ t_, where r* are the two fundamental spinor 
representations of Spin(N) (of dimension 2(N/2)-1 each). We let U = Spin(N + l), K = 
Spin(N) in this subsection unless specified otherwise. Let U and K be the corresponding 
Lie algebras. Then we have a direct sum decomposition U = K @ K’, where K’ is the 
orthogonal complement of K with respect to the Killing form. Let xo = eK E U/K. We 
define the local cross section of U (U/K, K), 0 : U/ K\(antipodal point of xo) + U, in 
the following manner. Let Exp and exp denote the exponential mappings on U/K and U, 
respectively. Then as in any symmetric space (see [lo]) Exp X = n(exp X) = exp(X)xo, 
X E K’, where rr : U + U/K is the projection map. Hence we can choose 

a(Exp X) = exp X, X E PO, (4.1) 

PO = (X E K’ 1 (X, X) < n), where (, ) = -cB, B the Killing form on U, and c > 0 is 
a normalization constant determined by requiring that the radius of SN be 1. We shall use 
this cross section in the following. 

Case 1. N even. The sets C(Q) of (the equivalence classes of) the irreducible represen- 
tations (h-reps) of Spin(N + 1) that contain rh are (see, e.g., [ 11) 

fi(*+) = fi(t_) = {h, = (n + i, i, . . . , $),n = 0, 1, . . .}. (4.2) 

The multiplicity of th in A,,]K is 1 for all n. The iterated Dirac operator and the spinor 
Laplacian L = c,“=, VaVa on a manifold M are related in general by Lichnerowicz 
formula 

Q2=L-+R, (4.3) 

where R is the curvature scalar of M. Then the eigenvalues hi N of -02 on SN are given 
in terms of the eigenvalues w, of -L by 

G.N = 0, + ~N(N - 1). (4.4) 

Now using the general formula for the eigenvalues of-L acting on L2(U/K, ES) (see Ref. 
[2] for a proof) we have for ET+ (Cz(p) denotes the Casimir number of the irrep w) 
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wn = w,, = C2hl) -C2(r+h (4.5) 

(We note here that the Laplacian defined in [ 16, Section 5.51 has eigenvalues -Q(h,)). Eq. 
(4.5) follows from the relation LU/K = Ru - QK, where Q, = xi q? and flK = xi Xi2 
are the Casimir elements of U and K ({ Ti} and (Xi ) are orthonormal bases of U and K, 
respectively). For ET- we have the same eigenvalues since Cz(t+) = Cz(r_). The Casimir 
number of an irrep with highest weight h is given by Freudenthal’s formula: 

C2(h) = (h+pj2 -p2 = A. (IL+ 2p), (4.6) 

where p is half the sum of the positive roots of the group. The dimensions are given by the 
Weyl formula 

OJ . (h + P) dA=I-I cr.p ’ 
a>0 

(4.7) 

where the product is over the positive roots o of the group. Using these (combined with 
(4.4) and (4.5)), we can readily verify the formulas for the eigenvalues and degeneracies of 
Q2 obtained in Section 2. 

If r is any it-rep of K, the heat kernel K (x, y, t) of the Laplacian L, on ES is in general 
an element of Hom(E,, E,) 2: E, @ Et for each t E lR+ and x, y E U/K, and satisfies 

(-(alar) + Lx) K(x, y,t) = 0, (4.8) 

with the initial condition 

lim 
t--to+ s 

K(x, Y, r)@(y) dy = q(x), (4.9) 

U/K 

for any continuous section @ E T(Er). Let U”(U)‘~ (u E U, i,j = 1, ..,di) be the 

representation matrix for the irrep ;C E G(t) in a given orthonormal basis of VA. For 
simplicity suppose that the representation t appears only once in h I K , and choose the basis 
(ej) of Vh such that the vectors (e,],=t, ___, d, span V, (the subspace of vectors of V, which 
transform under K according to 5). The matrix-valued function on U given by f:j : u + 
I!J”(~-‘)‘~ satisfies ffj((uk) = s(kp’)abf~‘(u) for k E K. Thus for each j = 1, . ,dA 

ffj defines a cross section of E’. Let the eigenvalue of L, acting on f:j be --WA. Then, the 
mode expansion of the matrix heat kernel in the local basis 0, (x) = 0 (x)e, of r ( ES) can 
be obtained in general using the Frobenius Reciprocity Theorem as 

K (x, y, tYb = -+z d, b/K 
dh U*(a-’ (x)a(y))Oh eCrW”, a, b = 1, . , cl,, 

&ii(r) 

(4.10) 

where a-‘(x) = (a(x))-’ and VU/K is the volume of U/K. One can express this in a 
coordinate invariant manner as 
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(4.11) 

where PT is the projector of V,J onto VT, and U (x, y) is the parallel propagator from E,, the 
fibre at y, to EX along the shortest geodesic between them. The U-invariance of the heat 
kernel allows one to let x = xu without loss of generality. Now, letting I/ = Spin(N + 1) 
and K = Spin(N), and using (4.3), we find that the heat kernel of Q* (with one point at 
the origin) is the direct sum K = K+ @ K-, where the heat kernels K’ on ES* are given 

by 

K*(x,t) EE K*(xo,x,t) = 6, @$ (a (x)>U (x0, n)e-‘*i. N . (4.12) 

We have introduced the r+ (t-)-spherical functions @r (@!!), i.e. the linear operators in 
V,, (VT_) defined by 

@T(u) = P,+U~“(U)PS+, u E u, (4.13) 

and a similar relation for @!!, where P5+ and PT_ are the projectors of Vkn onto the subspaces 
where h, ]K is equivalent to t+ and t-, respectively. 

To determine @;, we first note that 

@3huk2) = ~+bW9!(4~+(~2), u E U, k1,k2 E K. (4.14) 

In view of the polar decomposition of U (see [ 10, Theorem 6.7, p.249 and Theorem 8.6, 
p.3231) it is enough to calculate the restrictions @L!(u), a E A = exp A, where A is any 
maximal abelian subspace of ICI. In our case A is a one-dimensional group - thus A 2: S’ . 
It is well known that M, the centralizer of A in K, may be identified with Spin(N - 1). 
From the relation am = ma (a E A, m E M) and from (4.14) we find that the operators 
@T(a), a E A, commute with all the operators of the representation t+ 1~ = cr, the unique 
fundamental spinor representation of Spin(N - 1). Since 0 is irreducible, it follows from 
Schur’s lemma that @t(a) must be proportional to the identity operator in VT+, 

@‘::(a) = fn(a)L a E A, 

where fn is a scalar function on A. 

(4.15) 

Now choose H E A by requiring a(H) = 1, where o is the unique positive restricted 
root of U relative to A [lo]. The normalization of the scalar product ( , ) on A (induced 
from that on K’) is such that (H, H) = 1, and corresponds to our choice V#-J/K = 52~. 
For a E A we write a = ag = exp(@H), where 6’ E R. If d(x,x’) denotes the geodesic 
distance between x, x’ E SN, then 

d@exo, xo> = d(kaexo, xo) = 0, k E K, (4.16) 

where xu is the origin (in our case the north pole). We shall now prove that 
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fnhl) = h(e), 

where I& (0) is given by (3.6). 

(4.17) 

In order to do this, we note that a second-order differential equation for hi s U“(Q) 
(h E fi) is given by Lemma 2 of [14] (with an analytic continuation to the compact case, 
i.e. with t + i0). Let Qu, QK and a,$, be the quadratic Casimir operators of the algebras 
corresponding to the groups U, K and M. Then we find that hi(e) satisfies the following 
differential equation: 

( 
? 

Y$ + m, cot 0$ 
J 

PA + ~J.(B)RM 

-T&&j [ tnM - nK)hA.(e) t- hA(e)(flM - SZK) + 2COSO N2 X,ih*(B)Xa, 
i=l 1 

= &h*(e) = -C2(h)hi(B), (4.18) 

where (X,i ) is an orthonormal basis of 

Kc, = (X E KY: (adH)2X = -X], (4.19) 

and we write X,i in place of dU*(X,i) or dr+(X,i) for simplicity. Now let h E fi(r+), i.e. 
h = A,,, and let @;1.(a,g> = P,+hk”(0)Pr+. By acting with P,+ both from the left and from 
the right in (4.18) we obtain an equation for @; (a~). It is clear that G?K and QM commute 
with PT+ . It is also easy to see that 

%5q(ufl) = @;bwK = -Cz(t+)q%), 

QM@&) = @!+&2~ = -C2(a)@;(ag). 

Furthermore, since @;(a~) is just a scalar operator, we have 

(4.20) 

(4.2 1) 

N-1 N-l 

C Xcxi@~(ufl)Xcxi = C XcxiX,i @;(uQ) = (C2(@) - C?(t+t))@;(uH). (4.22) 
i=l i=l 

Using these relations and substituting the explicit values of C2(hn), C~(S+) and Cl(a) in 
(4.18) we find that fn (a~) satisfies the same second-order differential equation as $,, (0) 
given in (3.6). Obviously @T(e) = 1, and fn must satisfy f,,(e) = 1. Thus (4.17) is proved 
and @: (~0) = +,, (f3)l. By proceeding in a similar way with t- we find the same expression 
for @!!(a~), namely Q!!(Q) = c&(0)1. Using these formulas in (4.12) we find the heat 
kernel K (x, t) for an arbitrary point x, which agrees with Eq. (3.8). 

Case 2. N odd. Let r be the fundamental spinor representation (i, :, . , $) of K = 
Spin(N). The branching rule for Spin(N + 1) 1 Spin(N) gives 

fi<r, = (A,+, n = O,l, . .} u (A.,, n = 0, 1, . . .), (4.23) 

where h$ and k; are the spinor representations of Spin(N + l), with highest weights 

A;=@+$,; )..., ;,+,. (4.24) 
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One can reproduce the formulas that we obtained for the eigenvalues hi N of -V2 and the 
degeneracies using the Freudenthal and Weyl formulas. 

The heat kernel of V2 (with one point at the origin) takes the form 

K(x,t) = K(xo,x,t) 

= & fJd,: (@“+(a(~)) + @“-(a(x))) U(xo.x)eC’“:.N. 
n-0 

(4.25) 

where the r-spherical functions a”* are defined by 

@“*(u> = PJ&U)Ps, u E u. (4.26) 

In order to calculate V*, we notice that the operators @“*(a), a E A, commute with 
all the t(m), m E M 2: Spin(N - 1) (the centralizer of A in K). The branching rule 
for Spin(N) 1 Spin(N - 1) gives now t]~ = o+ $ o_, where of and o_ are the two 
fundamental spinor representations of Spin(N - 1). Suppose we fix an orthonormal basis 
of V, adapted to the direct sum decomposition V, = Vo+ $ V,_. By applying Schur’s 
lemma we have 

@“*(a) = f:+((a)l+ $ f,i-(a)l-, a E A, (4.27) 

where fn: and fn? are scalar functions on A and lk denote the identity operators in V,, . We 
shall now determine these scalar functions by using the radial part of the Casimir operator. 

As before, by defining hi = U*(ue), we obtain (4.18) (by [ 14, Lemma 21). Now let 
h E G(t), i.e. h = hz or A;. By acting with PC in (4.18) both from the left and from the 
right we obtain an equation for Q”+(Q) and a,“-(a~). In this case, however, since V*(Q) 
are not scalar operators, Eq. (4.22) is no longer valid. Let diag(p, q) denote the operator 
pl+ @ql_ in VT, where p, q E C. Then it is not difficult to show, using the explicit formula 
for X,i in the irrep T, that 

N-l 

c N-l 
X,i diag(p, q)X,i = -- 

i=l 
4 diag(q, p). (4.28) 

Using (4.28) in (4.18) we get the following set of coupled equations for the functions 

fn+ (~0 ) and f,‘- (~0 ) : 

= -C2G,flf,+. (4.29) 

The same set of equations (with f,! += &) is obtained for the it-reps h = A;. 
By taking the sum and the difference of the two equations in (4.29), it is then easy to 

see that the function fnf((ae) + fnf-(a~> satisfies the same differential equation (2.15) as 
& (0) (given by (3.6)), and the function fn+ (a~) - f,‘- (a~) satisfies the same equation as 
the function $,, (0) given by 
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in - ~ - n! f(~N) sin le p(N/2, (N/2)-i)(COs e) 

4no(O) f(n+$v) 2 n (4.30) 

in the notations of Section 2. [The equation for I+?, is the same as (2.15) (for 1 = 0) with 
the replacement 8 + rr - 0.1 

Thus fnf+ (ae) + f,‘- (a~) 0: c&(O), and since & (0) = fn+i (e) = 1 we have 

fn++(Q) + fn+-(ae) = 2@,(O). (4.31) 

Similarly, we have 

f,++&) - fn+-(as) = 2ilCIn(C (4.32) 

where f,‘,(a,) = -fL(an) = (-1)“i has been used. (The equation @“*(a,) = 
&i(- 1)” fN can easily be proved.) Thus, 

.&(Q) = &(@) f i@,(e). (4.33) 

For the functions faT we obtain similarly 

f&(Q) = &(e) F i@,(e). (4.34) 

Using (4.33)-(4.34) in (4.27) and then in (4.25) we reproduce the heat kernel K(x, x’. r) 
given by (3.8). 

4.2. Spinors on HN 

Let us first review some general results. Let G be a noncompact semisimple Lie group 
with finite center, K a maximal compact subgroup, and G/K the associated Riemannian 
symmetric space of the noncompact type. Harmonic analysis on G/K is well understood 
in the case of scalars. For vector bundles L2-harmonic analysis on G/K may be reduced 
to L2-harmonic analysis on the group G, by letting L2(G/K, ET) (t E k) sit in L’(G) 
in a natural way. The important point here is that the heat kernel of the Laplacian acting 
on L2(G/ K, ES) may be expanded in terms of the r-spherical functions in a way which is 
similar to (4.12) with CkEe(r) di --f see,, dp(h), i.e. 

K(x,t) = K(xo,x,t) = f 
s 

@(dx>W(xo,x) eMrwA h-W& (4.35) 
5 

6(r) 

where dp(h) is the Plancherel measure (see, e.g., [ 111). The notations here are as follows. 
The r-spherical functions are the (operator-valued) functions g -+ @t(g) on G defined by 

Q;(g) = W’(g)P,, g E G, (4.36) 

where u*(g) denote the operators of the representation h E G(r) (this set has the same 
meaning as for the compact group U) in a Hilbert space HA, and P5 is the projector of HA 
onto V, , the subspace of vectors of HA. which transform under K according to T. (Again, 
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we assume that the irrep t appear only once in k for simplicity.) As in the compact case 
a(Exp X) = exp X (X E ICI), and U(xu,x) denotes the (vector bundle) parallel transport 
operator from x to xu along the geodesic between them. The vector bundle Laplacian LG/K 
takes the form 

LGfK = flG + OK, (4.37) 

where QG and GK are the quadratic Casimir operators of 6 and Ic. The plus sign in front of 
DK is due to the fact that the Killing form has opposite signature on K: and ICI. Denoting 
the Casimir value of h by -Cz(h), we find the eigenvalues -WA of LG/K from (4.37) as 

- WA. = -Cz(k) - C2(t). (4.38) 

There is a well-known duality between the noncompact and the compact symmetric spaces. 
Consider the subspace U = Ic @ iic’ of the complexification G” of G, where i = a. 
The Lie algebra U is called a compactform of 6 (cf. [ 11, p. 1141). It is a compact Lie algebra 
since the Killing form is negative definite on 2.4. Let U denote a simply connected compact 
Lie group with Lie algebra Z.4. Then U/K is the compact symmetric space which is dual to 
G/K [ 101. It is clear that the radial parts of the Casimir operators on G and U (acting on 
r-spherical functions) will be related by analytic continuation through h -+ ih, for h E A. 
Now, let G = Spin(N, l), K = Spin(N), G/K = HN. 

Case 1. N even. Let t = r+ $ t-. (We use the same notations as in Section 4.1.) From 
the branching rule for Spin (N, 1) > Spin(N) we find that no discrete series contain t (see 
[6]). Let U(ih, U) denote the unitary principal series representation labelled by h E Iw+ and 
o E k, where M = Spin(N - 1) is the centralizer of A in K and G = KA N is an Iwasawa 
decomposition of G [ 161. This is the representation of G induced by the representation D 
of a minimal parabolic subgroup MAN, where 

D(man) = a(m)e iA(log a) (4.39) 

By Frobenius Reciprocity U(il,o)(K contains t if and only if t],+, contains (T. Thus we 
find that the unitary principal series containing both t+ and t_ are the CJ(ih, 6) with u = 

(& . . . , $, the fundamental spinor representation of M. The Plancherel measure for this 
principal series is (see [6]) 

dP(U(iA, ,)I = 

2N-2 

----do lC(A)l-2 dk., 
XQN-I 

(4.40) 

C(h) = 2N-2r(iN) r(ik + i) 

fi r(ih + ;N)’ 
(4.41) 

where d c = 2(N/2)-’ is the dimension of 0 and fiiy_ 1 is the volume of SN-t (cf. (2.27)). The 
radial part of the Casimir operator acting on the restrictions @$(uY), uY = exp(yH) E A, 
may be obtained from (4.18) by letting 8 + iy and applying Ps, (or P5_) both from the 
left and from the right. Again we find, using Schur’s lemma, @$(uy) = @k(y)l, where 4~ 
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is a scalar function on A. The Casimir value -Cz(i) for U(ih. 0) may be easily calculated 
and is given by 

-C2(h) = -IL2 - $N(N - 1). (4.42) 

Then from (4.3) we find that the eigenvalues of rb2 are given by --k2, h E [w. The resulting 
differential equation satisfied by the scalar function @i(y) is obtained from that for fn (~0) 
in the compact case by letting 8 + iy and n -+ -ih - ;N. We find the solution to be 

&,(y) = cash iy F(ih + ;N, - ih + :N, :N, - sinh’ iy). (4.43) 

Similarly we find @i(a,) = &(y)l. Using the above formulas in (4.35) we find for the 
heat kernel K = Kf @ K-, 

K+(x,t) @ K-(x,t) = U(xo,x) 
2N-3r(; N) +c= 

r(N,2j+l 

s 
$~(y)e-‘*21C(h)l-2 dh, (4.44) 

0 

where y = d(xo, x). This agrees with (3.9) and (3.10). 
Case 2: N odd. Let t be the irrep (i, 4, . . . , $) of K. By Frobenius Reciprocity we 

find that the unitary principal series representations containing r are UciA, c+~ and Ucih, o_ ). 
where 0% = (4, . . ,i, f i) are the two fundamental spinor representations of M = 
Spin(N - 1). The Plancherel measure dp(Cl(u, g+)) = dp(U(ih,c_)) is given again by 
(4.40) (with do + du+ = 2(N-3)/2) and (4.41). 

Since r 1~ = (T+ &I (T_, the s-spherical functions Q’*(g) = PT U(iA. ,,,(g) PT at K = 
a, = exp(yH) E A are given by (cf. (4.27)) 

@**(+) = d&(&!+(y), f:(y)). (4.45) 

The scalar functions f*+ * and fAF may be obtained from fn+ and fn?, respectively, in 
(4.33) and (4.34) by letting n + -ih - ;N and changing the argument 0 -+ iy because 
the differential equations are related in this manner. Thus 

fh+i = 4~ f Wh = f& 

where &(y) is given by (4.43) and 

(4.46) 

@h(y) = (2hlN)sinh $y F(ih + ;N, - ih + ;N, ;N + 1, - sinh* iy). (4.47) 

Using the above equations in (4.35) we find that the heat kernel K(x,r) is given by the 
right-hand side of (4.44), again in agreement with our results in Section 3. 

Acknowledgements 

The authors would like to thank Prof. Andrzej Trautman for useful discussions and 
for pointing out Ref. [15]. The work of A.H. was supported in part by Schweizerischer 
Nationalfonds. 



18 R. Camporesi, A. Higuchi/Journal of Geometry and Physics 20 (1996) 1-18 

References 

[1] A.O. Barut and R. Raczka, Theory of Group Representations and Applications (World Scientific, 
Singapore, 1986). 

[2] R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rep. 196 (1990) 1. 
[3] R. Camporesi, The spinor heat kernel in maximally symmetric spaces, Comm. Math. Phys. 148 (1992) 

283-308. 
[4] R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 

35 (1994) 4217-4246. 
[5] R. Camporesi and A. Higuchi, The Plancherel measure for p-forms in real hyperbolic spaces, J. Geom. 

Phys. 1.5 ( 1994) 57-94. 
[6] R. Camporesi, The spherical transform for homogeneous vector bundles over hyperbolic spaces, preprint 

(1993). 
[7] Y. Choquet-Bruhat, C. Dewitt-Morette and M. Dillard-Bleick, Analysis, ManifoldsandPhysics, Revised 

Ed. (North-Holland, Amsterdam, 1982). 
[8] L. Dabrowski and A. Trautman, Spinor structures on spheres and projective spaces, J. Math. Phys. 27 

(1986) 2022-2028. 
[9] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products, Revised Ed. (Academic 

Press, New York, 1980). 
[IO] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic Press, New York, 

1978). 
[ 111 A. Knapp, Representation Theory of Semisimple Groups, an Overview based on Examples (Princeton 

University Press, Princeton, NJ, 1986). 
[ 121 S. Kobayashi and K. Nomizu, Foundations of Difirential Geometry, Vols. I and II (Interscience, New 

York, 1969). 
[ 131 J. Milnor, Spin structures on manifolds, L’Enseignement Math. 9 (1963) 198-203. 
[ 141 E. Thieleker, On the integrable and square-integrable representations of Spin( 1,2m), Trans. Amer. Math. 

Sot. 230 (1977) 140. 
[15] A. Trautman, Spin structures on hypersurfaces and the spectrum of the Dirac operator on spheres, 

in: Spinors, Twistors, Clifford Algebras and Quantum Deformations (Kluwer Academic Publishers, 
Dordrecht, 1993). 

[16] N.R. Wallach, Harmonic Analysis on Homogeneous Spaces (Marcel Dekker, New York, 1973). 


